Linear and convex aggregation of density estimators
نویسندگان
چکیده
We study the problem of learning the best linear and convex combination of M estimators of a density with respect to the mean squared risk. We suggest aggregation procedures and we prove sharp oracle inequalities for their risks, i.e., oracle inequalities with leading constant 1. We also obtain lower bounds showing that these procedures attain optimal rates of aggregation. As an example, we consider aggregation of multivariate kernel density estimators with different bandwidths. We show that linear and convex aggregates mimic the kernel oracles in asymptotically exact sense. We prove that, for Pinsker’s kernel, the proposed aggregates are sharp asymptotically minimax simultaneously over a large scale of Sobolev classes of densities. Finally, we provide simulations demonstrating performance of the convex aggregation procedure. 2000 Mathematics Subject Classification. Primary 62G07, Secondary 62G05, 68T05, 62G20.
منابع مشابه
Optimal bounds for aggregation of affine estimators
We study the problem of aggregation of estimators when the estimators are not independent of the data used for aggregation and no sample splitting is allowed. If the estimators are deterministic vectors, it is well known that the minimax rate of aggregation is of order log(M), where M is the number of estimators to aggregate. It is proved that for affine estimators, the minimax rate of aggregat...
متن کاملOptimal Rates of Aggregation
We study the problem of aggregation of M arbitrary estimators of a regression function with respect to the mean squared risk. Three main types of aggregation are considered: model selection, convex and linear aggregation. We define the notion of optimal rate of aggregation in an abstract context and prove lower bounds valid for any method of aggregation. We then construct procedures that attain...
متن کاملAggregation of Spectral Density Estimators
Given stationary time series data, we study the problem of finding the best linear combination of a set of lag window spectral density estimators with respect to the mean squared risk. We present an aggregation procedure and prove a sharp oracle inequality for its risk. We also provide simulations demonstrating the performance of our aggregation procedure, given Bartlett and other estimators of...
متن کاملCAKE: Convex Adaptive Kernel Density Estimation
In this paper we present a generalization of kernel density estimation called Convex Adaptive Kernel Density Estimation (CAKE) that replaces single bandwidth selection by a convex aggregation of kernels at all scales, where the convex aggregation is allowed to vary from one training point to another, treating the fundamental problem of heterogeneous smoothness in a novel way. Learning the CAKE ...
متن کاملAdapting to Unknown Smoothness by Aggregation of Thresholded Wavelet Estimators
We study the performances of an adaptive procedure based on a convex combination, with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded regression model, with random uniform design, and the nonparametric density model, we show that the resulting estimator is optimal in the minimax sense over all Besov balls under the L2 risk, without any logarithm factor.
متن کامل